

ADS-B OpEval OCG-1 @ MITRE/CAASD

April 11-13, 2000

Overview

- SF21 RTCA Nine Operational Enhancements
- CAA Objectives
- Memphis (MEM) Objectives
 - Airport Target Identification System (ATIDS)
- Louisville (SDF) Objectives
 - Common ARTS
 - OpEval Applications Overview
- Time Table
- I-Lab OpEval Development Phases
- OpEval Coordination Group (OCG) Structure
- RFI Letter Status / Update

SF21 RTCA Nine Operational Enhancements

Air-to-Air

- Improved Separation Standards
- Improved Low-Visibility Approaches

• Enhanced See and Avoid

• Enhanced Operations for En Route

Air-to-Ground

- Surveillance Coverage in Non-Radar Airspace
- Affordable Reduction of Controlled Flight into Terrain (CFIT)

Ground-to-Ground

- Improved Navigation on Taxiways
- Enhanced Controller Management of Surface Traffic

Ground-to-Air

• Weather and Other Data to the Cockpit

CAA Prioritized Objectives

- Airborne Conflict Detection & Resolution
- Improved Terminal Area Operations
- Runway Incursion
- Surface Navigation
- Fix TIS (Required to move to TIS-B)
- TIS-B

MEM OpEval-3 Objectives (Spring '01)

- Develop and evaluate avionics and procedural modifications needed to support operational approval for the following SF21 Master Plan application:
 - Enhanced Presentation of Surface Targets to Controller (7.1)
- Enhance Airport Surface Management by facilitating better coordination among and communication between surface traffic management operations within airline operations, air traffic control and airport operators.
 - Partnership with NWA
- Limited demonstration to key industry participants

Airport Target Identification System (ATIDS)

Surveillance Data Automation

- Tracking & Identification of Transponder Equipped Aircraft
- Fusion of ASR-9 (Terminal Radar), ASDE-3 (Surface Radar), ADS-B (LDPU & TCAS II Change 7 Mode S) and Mode A/C/S Equipped Aircraft
- Common Display in FAA ATCT, FedEx and NWA RTOs

Schedule

- System delivered to MEM Aug 2000
- System testing completed Nov 2000

SDF OpEval-2 Objectives (Fall '00)

- Develop and evaluate avionics and procedural modifications needed to support operational approval for the following SF21 Master Plan applications:
 - Approach Spacing (for visual approach) (3.2.1)
 - Departure Spacing/Clearance (3.4)
 - Runway and Final Approach Occupancy Awareness (6.1.1)
 - Airport Surface Situational Awareness (6.2)
- Evaluate air traffic controller use of ADS-B in terminal area environment, concentrating on the applications listed above.
- Limited demonstration to key industry participants

Common ARTS

Common ARTS Terminal Automation System

- Single thread (non-redundant) subset of ARTS-IIIE
- Will include hardware, software, two "SF21 displays"
- To be operated in shadow mode
- SF21 displays to be located in TRACON

Schedule

- System delivered to SDF Aug 2000
- System testing completed Sept 2000

SDF OpEval-2 Applications Overview

- Approach Spacing (for Visual Approach)
- Airport Surface Situation Awareness
- Runway and Final Approach Occupancy Awareness
- Departure Spacing

Approach Spacing (for Visual Approach)

 Objective: Assess whether CDTI can support consistent spacing interval at runway threshold

Airport Surface Situation Awareness

 Objective: Assess whether CDTI can enhance surface situational awareness on the flight deçk

Runway and Final Approach Occupancy Awareness

• Objective: Assess whether CDTI can enhance runway traffic awareness

Departure Spacing

Objective: Assess whether CDTI can enhance departure operations

Time Table

Calendar Year 2000

•	Feb - May	Define SDF Application Requirements
	•	
•	May 15	Non-CAA Participants RFI Selection
•	May 23-24	OCG-2 @ SDF
•	May - Jul	I-Lab Implementation of SDF
		Application Requirements
•	Jun 13-15	I-Lab I & OCG-3 @ MITRE/CAASD (SDF)
•	Jul	UPS STC request for Ops Approval
		Define MEM High-level Application Rqmts
•	Jul 25-27	I-Lab II & OCG-4 @ MITRE/CAASD (SDF)
•	Jul - Sep	Installation & Optimization of
		Common ARTS @ SDF
•	Aug - Nov	Installation & Optimization of ATIDS @ MEM

Time Table

Calendar Year 2000 - 2001

• Sep 11-14 I-Lab III (SDF) & OCG-5 @ MITRE/CAASD

Oct. 10 -12
 OCG-6 @ SDF

Oct 23-26
 Dry Run @ SDF

• Oct 26-31 OpEval-2 @ SDF

Nov
 OCG-7 @ MITRE/CAASD

Nov-Jan 2001 Define MEM Application Requirements

Jan Draft OpEval-2 Reports

mid-Jan
 I-Lab I & OCG-1 (MEM)

Feb FedEx STC requests for Ops Approval

mid-Feb
 I-Lab II & OCG-2 (MEM)

• mid-Mar I-Lab III & OCG-3 (MEM)

Apr/May OpEval-3 @ MEM

Jun-Oct OpEval-2 & OpEval-3 Reports

I-Lab OpEval Development Phases

I-Lab Simulation Objectives

 Develop application-specific procedures, briefing materials, scenarios, and data collection parameters that will be used in the OpEval flights

3 I-Lab simulations

- CAA CDTI & "Enhanced" CDTI
- SDF Airport
- Controller TRACON Displays

I-Lab OpEval Development Phases

I-Lab I Objectives (June 13-14):

- Review simulation environment
- Initial scenario development

I-Lab II Objectives (July 25-26):

- Further scenario & procedural development
- Review "Enhanced CDTI" for applications
- Identify data collection parameters

I-Lab III Objectives (Sept. 12 -14):

- Finalize scenarios, procedures, data collection, and briefing materials for use in OpEval
- Finalize requirements for "Enhanced CDTI"

Steering Committee Structure

ADS-B OCG Structure

SDF OpEval-2 WG Structure

SDF WG

Test Ops

Oscar Olmos (MITRE) Al Groves (UPS)

ATC Subgroup

Keith Dutch (FAA) Ann Moore (FAA)

HF Subgroup ATC- ??

Cockpit- Peter Hwoschinsky (FAA)

Cost/Benefit

Anne Yablonski (FAA) Gary Paull (MCR)

TEMP

Kevin Miller (TRIOS)

Facilities

Jim Walton (UPS)

Tech/Cert

Ray Yuan (JHU)

Media/PR

Ken Shapero (UPS) Candy Graham (LM-ATM)

Applications Subgroup

Anand Mundra (MITRE) Keith Dutch (FAA)

Final Approach Spacing (VMC)

Oscar Olmos (MITRE) Peter Hwoschinsky (FAA)

Airport Surface Situation Awareness

Vern Battiste (NASA) Dave Stewart (TRIOS)

Final Approach Occupancy Awareness

Vern Battiste (NASA) Dave Stewart (TRIOS)

Departure Spacing

Keith Dutch (FAA)

Avionics Infrastructure Subgroup

Art Smith (MITRE) Rob Strain (MITRE)

> Tech. Center A/C Navy P-3 NASA 757 AOPA

Collins
Ohio University
Capstone
Cumulus

RFI Letter Status / Update

Mar 21 Official Letters Mailed by CAA

Apr 21 Response Due to CAA

Apr 22 - May 12 Evaluate RFI's

- Avionics Infrastructure Subgroup

- Test Ops Subgroup

May 15-19 Participants Selected

May 22 Participants Notified

May 24-26 Participants Invited to OCG-2

RFI Recipients

- AGATE Consortium
- AOPA
- BF Goodrich
- Capstone
- Cumulus Consultants
- Defense Concept Associates
- Honeywell

- Litton Aero Products
- NASA Langley
- Northrop Grumman
- Ohio University
- Rockwell Collins
- USAF Flight Standards Agency
- US Navy